Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 914: 169898, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184266

RESUMO

Agro-industrial byproducts and food waste necessitate an environmentally friendly way of reducing issues related to their disposal; it is also necessary to recover as much new raw material from these resources as possible, especially when we consider their potential usage as a precursor for preparing depolluting materials, such as activated carbon. In this work, coffee grounds and olive stones were chosen as precursors and the adsorption capacity of the obtained porous carbons for volatile organic compounds (VOCs) was studied. Microporous activated carbons (ACs) were prepared using chemical (K2CO3) and physical (CO2) activation. The influence of the activation process, type, and time of activation was also investigated. Measurements of VOCs adsorption were performed, and methyl-ethyl-ketone (MEK) and toluene were chosen as the model pollutants. The surface areas and total pore volumes of 1487 m2/g and 0.53 cm3/g and 870 m2/g and 0.22 cm3/g for coffee ground carbons and olive stone carbons, respectively, were obtained via chemical activation, whereas physical activation yielded values of 716 m2/g and 0.184 cm3/g and 778 cm2 g-1 and 0.205 cm3/g, respectively. As expected, carbons without activation (biochars) showed the smallest surface area, equal to 331 m2/g and 251 m2/g, and, hence, the lowest adsorption capacity. The highest adsorption capacity of MEK (3210 mg/g) and toluene (2618 mg/g) was recorded for chemically activated coffee grounds. Additionally, from the CO2 isotherms recorded at a low pressure (0.03 bar) and 0 °C, the maximum CO2 adsorption capacity was equal to 253 mg/g.

2.
Materials (Basel) ; 16(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770195

RESUMO

The increase in concrete structures' durability is a milestone to improve the sustainability of buildings and infrastructures. In order to ensure a prolonged service life, it is necessary to detect the deterioration of materials by means of monitoring systems aimed at evaluating not only the penetration of aggressive substances into concrete but also the corrosion of carbon-steel reinforcement. Therefore, proper data collection makes it possible to plan suitable restoration works which can be carried out with traditional or innovative techniques and materials. This work focuses on building heritage and it highlights the most recent findings for the conservation and restoration of reinforced concrete structures and masonry buildings.

3.
J Environ Manage ; 322: 116031, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055093

RESUMO

Slash and burn is a land use practice widespread all over the world, and nowadays it is formally recognized as the principal livelihood system in rural areas of South America, Asia, and Africa. The practice consists of a land rotation where users cut native or secondary forest to establish a new crop field and, in some cases, build charcoal kilns with the cut wood to produce charcoal. Due to several socio-economic changes in developing countries, some scientists and international organizations have questioned the sustainability of slash and burn since in some cases, crop yield does not justify the soil degradation caused. To estimate the soil quality in agricultural and forest soils at different ages of the forest-fallow period (25, 35, and 50 years), this survey investigated rural areas in three locations in Manica province, central Mozambique: Vanduzi, Sussundenga, and Macate. Soil profiles were trenched and sampled with a pedological approach under crop fields and forest-fallow. The chronosequence was selected to test the hypothesis that the increase in forest-fallow age causes an improvement of soil fertility. Results highlighted discrete variations among locations in mineralogy, Al- and Fe-oxyhydroxides, sand, silt, pH, total organic carbon, humic carbon, total nitrogen, available phosphorous, chloride, nitrate, fluoride, and ammonium. Few differences in mineralogy, Fe-oxyhydroxides, available P, chloride, and nitrate were detected between crop fields and forest-fallow within the same location. Such differences were mostly ascribed to intrinsic fertility inherited from the parent material rather than a longer forest-fallow period. However, physicochemical soil property improvement did not occur under a forest age of 50 years (the longest forest-fallow considered), indicating that harmonization of intrinsic fertility and agronomic practices may increase soil organic matter and nutrient contents more than a long forest-fallow period.


Assuntos
Compostos de Amônio , Queimaduras , Agricultura/métodos , Carbono , Carvão Vegetal , Cloretos , Fluoretos , Humanos , Pessoa de Meia-Idade , Moçambique , Nitratos , Nitrogênio , Compostos de Fósforo , Areia , Solo/química
4.
Materials (Basel) ; 14(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34832169

RESUMO

The enormous world demand for personal protective equipment to face the current SARS-CoV-2 epidemic has revealed two main weaknesses. On one hand, centralized production led to an initial shortage of respirators; on the other hand, the world demand for single-use equipment has had a direct and inevitable effect on the environment. Polylactide (PLA) is a biodegradable, biocompatible, and renewable thermoplastic polyester, mainly derived from corn starch. Electrospinning is an established and reproducible method to obtain nano- and microfibrous materials with a simple apparatus, characterized by high air filtration efficiencies. In the present work, we designed and optimized an open-source electrospinning setup, easily realizable with a 3D printer and using components widely available, for the delocalized production of an efficient and sustainable particulate matter filter. Filters were realized on 3D-printed PLA support, on which PLA fibers were subsequently electrospun. NaCl aerosol filtration tests exhibited an efficiency greater than 95% for aerosol having an equivalent diameter greater than 0.3 µm and a fiber diameter comparable to the commercially available FFP2 melt-blown face mask. The particulate entrapped by the filters when operating in real environments (indoors, outdoors, and working scenario) was also investigated, as well as the amount of heavy metals potentially released into the environment after filtration activity.

5.
Materials (Basel) ; 14(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917096

RESUMO

This editorial reports on a thorough analysis of the abundance and scarcity distribution of chemical elements and the minerals they form in the Earth, Sun, and Universe in connection with their number of neutrons and binding energy per nucleon. On one hand, understanding the elements' formation and their specific properties related to their electronic and nucleonic structure may lead to understanding whether future solutions to replace certain elements or materials for specific technical applications are realistic. On the other hand, finding solutions to the critical availability of some of these elements is an urgent need. Even the analysis of the availability of scarce minerals from European Union sources leads to the suggestion that a wide-ranging approach is essential. These two fundamental assumptions represent also the logical approach that led the European Commission to ask for a multi-disciplinary effort from the scientific community to tackle the challenge of Critical Raw Materials. This editorial is also the story of one of the first fulcrum around which a wide network of material scientists gathered thanks to the support of the funding organization for research and innovation networks, COST (European Cooperation in Science and Technology).

6.
Waste Manag ; 100: 208-218, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546181

RESUMO

The recovery of cellulose in toilet paper from municipal wastewater is one of the most innovative actions in the circular economy context. In fact, fibres could address possible new uses in the building sector as reinforcing components in binder-based materials. In this paper, rotating belt filters were tested to enhance the recovery of sludge rich in cellulose fibres for possible valorisation in construction applications. Recovered cellulosic material reached value up to 26.6 gm-3 with maximum solids removal of 74%. Content of cellulose, hemicellulose and lignin was found averagely equal to 87% of the total composition. Predictive equation of cellulosic material was further obtained. The addition of recovered cellulose fibres in mortars bring benefits in terms of lightness, microstructure and moisture buffering value (0.17 g/m2%UR). Concerning mechanical properties, flexural strength was improved with the addition of 20% of recovered cellulose fibres. In addition, a simplified economic assessment was reported for two possible pre-mixed blends with 5% and 20% of recovered fibres content.


Assuntos
Celulose , Esgotos , Materiais de Construção , Lignina , Águas Residuárias
7.
J Appl Biomater Funct Mater ; 16(4): 207-221, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29991308

RESUMO

The paper represents the "state of the art" on sustainability in construction materials. In Part 1 of the paper, issues related to production, microstructures, chemical nature, engineering properties, and durability of mixtures based on binders alternative to Portland cement were presented. This second part of the paper concerns the use of traditional and innovative Portland-free lime-based mortars in the conservation of cultural heritage, and the recycling and management of wastes to reduce consumption of natural resources in the production of construction materials. The latter is one of the main concerns in terms of sustainability since nowadays more than 75% of wastes are disposed of in landfills.


Assuntos
Materiais de Construção , Gerenciamento de Resíduos/métodos , Compostos de Cálcio/química , Argila/química , Química Verde/métodos , Óxidos/química , Reciclagem , Borracha/química , Dióxido de Silício/química
8.
J Appl Biomater Funct Mater ; 16(3): 186-202, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29996741

RESUMO

This review presents "a state of the art" report on sustainability in construction materials. The authors propose different solutions to make the concrete industry more environmentally friendly in order to reduce greenhouse gases emissions and consumption of non-renewable resources. Part 1-the present paper-focuses on the use of binders alternative to Portland cement, including sulfoaluminate cements, alkali-activated materials, and geopolymers. Part 2 will be dedicated to traditional Portland-free binders and waste management and recycling in mortar and concrete production.


Assuntos
Materiais de Construção , Química Verde , Gerenciamento de Resíduos/métodos , Álcalis/química , Compostos de Alumínio/química , Silicatos de Alumínio/química , Compostos de Cálcio/química , Argila , Corrosão , Compostos de Enxofre/química
9.
Materials (Basel) ; 10(8)2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28829382

RESUMO

Innovative and multifunctional mortars for renders and panels were manufactured using white photocatalytic and non-photocatalytic cement as binder. Unconventional aggregates, based on lightweight materials with high specific surface and adsorbent properties, were adopted in order to investigate the possible ability to passively improve indoor air quality. The reference mortar was manufactured with traditional calcareous sand. Results show that even if the mechanical properties of mortars with unconventional aggregates generally decrease, they remain acceptable for application as render. The innovative mortars were able to passively improve indoor air quality in terms of transpirability (70% higher), moisture buffering ability (65% higher) and depolluting capacity (up to 75% higher) compared to traditional ones under the current test conditions.

10.
Environ Sci Pollut Res Int ; 24(14): 12638-12645, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27761865

RESUMO

Nowadays, there is an amplified interest in maintaining suitable indoor air quality (IAQ). Besides a wide range of available interventions, air cleaners are considered a valuable tool, since based on inexpensive and easily implementing technologies to improve IAQ. The purpose of this work is to combine the TiO2-photocatalysis with the electrostatic and adsorption processes, in order to improve efficiency and reliability. A TiO2-photocatalytic oxidation combined with an electrostatic filter has been studied. Nitrogen oxides reduction and degradation of many VOC over different catalyst support were monitored jointly with CO and CO2 production. The coupling of photocatalysis with an external electric field enhances efficiency of the process. The choice of materials with diversified adsorptive characteristics plays an important role in the durability of the process over time.


Assuntos
Poluição do Ar em Ambientes Fechados , Oxirredução , Poluentes Atmosféricos , Catálise , Óxidos de Nitrogênio , Reprodutibilidade dos Testes , Titânio
11.
Sci Total Environ ; 575: 23-32, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27723461

RESUMO

The EU policy of reducing the emissions of combustion generated pollutants entails climate induced deterioration to become more important. Moreover, products applied to preserve outdoor built heritage and their preliminary performance tests often turn out to be improper. In such context, the paper reports the outcomes of the methodology adopted to assess the durability and efficiency of nano-based consolidating products utilized for the conservation of carbonate artworks, performing field exposure tests on Carrara marble model samples in different sites in the framework of the EC Project NANOMATCH. Surface properties and cohesion, extent and penetration of the conservative products and their interactions with marble substrates and environmental conditions are here examined after outdoor exposure for eleven months in four different European cities and compared with the features of undamaged and of untreated damaged specimens undergoing the same exposure settings.

12.
Sci Total Environ ; 490: 776-84, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24907612

RESUMO

A proper recognition of the pollutant sources in atmospheric deposit is a key problem for any action aiming at reducing their emission, being this an important issue with implications both on human health safeguard and on the cultural heritage conservation in urban sites. This work presents the results of a statistical approach application for the identification of pollutant sources in deposits and damage layers on monuments located in different European sites: Santa Maria del Fiore, Florence (Italy), Cologne Cathedral, Cologne (Germany), Ancient ramparts, Salè (Morocco), National Museum, Cracow (Poland) and National Gallery, Oslo (Norway). For this aim, the surface damage layers on monuments and historical buildings of the selected sites were collected and analyzed, in terms of ionic and elemental composition, through application of ion chromatography and induced coupled plasma-optical emission spectroscopy. The achieved results were processed by multivariate analyses such as correlation matrix and principal component analysis in order to identify the possible origin of pollutants affecting the state of conservation of the monuments. This allowed us to assume that in all case studies the traffic emission is the main pollutant source. In the case of Ancient ramparts, Salè (Morocco), and National Gallery, Oslo (Norway), the surfaces are also under influence of marine aerosols. Moreover, concerning the Cologne Cathedral, the strong impact of the pollutants emitted by railway station was also revealed.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Aerossóis/análise , Itália , Análise Multivariada , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...